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Elasticity of a nematic polymer in the infinite molecular chain limit 

by VICTOR G. TARATUTAt and ROBERT B. MEYER 
Martin Fisher School of Physics, Brandeis University, Waltham, 

Massachusetts 02254, U. S .A. 

(Received 25 September 1986; accepted I2 December 1986) 

Some of the consequences of constructing a nematic phase out of infinitely long 
non-rigid molecules are discussed. The basic idea consists in the fact that splay 
deformation is difficult in a nematic composed of long molecules and becomes 
strictly impossible in the infinite molecular chain limit. Some of the implications 
of this effect for low energy elastic deformations in a polymer nematic liquid crystal 
are explored. A practically important example of the interaction of a long mol- 
ecular chain nematic with an undulating surface is worked out. 

1. Introduction 
In order to understand the possible differences between a low molecular weight 

nematic and a polymer nematic liquid crystal, we consider a limit of infinitely long 
molecular chains. It was first pointed out by de Gennes [ I ]  that in polymer nematics 
the splay deformation imposes local changes in the density and thus requires large 
energy. To achieve splay at constant density requires that the gaps opened up between 
the molecules be filled by the ends of neighbouring molecules [2, Chap. 61. As the 
molecules become long, there are fewer ends available to fill the gaps, making splay 
difficult. In the limit of infinitely long chains, with no chain ends available and for 
chains that are not kinked, we can write down a static analogue of a continuity 
equation for a nematic director 

V * (en) = 0, 

where e is the number density of chains in a plane normal to the nematic director n. 
The coupling between splay and density gradients then becomes exact 

and there can be no splay deformation if the density of the system is to stay constant. 
In polymer nematics, once this idea was realized, it served as a clue to understanding 
various structural phenomena. In the static limit of a splay Fredericks transition for 
example, a nematic sample of poly-y-benzyl glutamate (PBG) exhibits a spatially 
periodic, rather than uniform [3], response to an applied magnetic field. This 
phenomenon was explained to be caused by the large anisotropy between the splay 
and the twist elastic constant ( K , / K ,  > 3.3 is the condition for this effect to occur) 
and is not observed in low molecular weight nematics. 

t Present address: Department of Physics, Massachusetts Institute of Technology, Cam- 
bridge, Massachusetts 02139, U.S.A. 
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3 74 V. G. Taratuta and R. B. Meyer 

Bend and twist deformations are not constrained by the increased molecular 
length. A non-rigid mdecule will bend to follow the local director pattern. For flexible 
enough molecules, the bend elastic constant will be independent of their length. For 
any real ‘rigid’ molecule, there must exist a crossover regime at a length beyond which 
it bends to follow the local curvature. 

Twist deformation for highly ordered states of a nematic should likewise not be 
inhibited as there is no interference between successive layers of molecules, no matter 
how long they are. In the case of imperfect order (order parameter S < I ) ,  the 
molecules will have a component of their orientation parallel to the twist axis, thus 
entering regions in which they are misaligned. This effect becomes more significant as 
the molecular length increases. However, non-rigid molecules will bend to follow the 
local director, thus keeping the twist elastic constant finite as the chain length grows. 

One interesting aspect of splay deformation in long-chain nematics has been 
pointed out by Meyer [2, pp. 147-1501. If there are chain ends available, splay 
deformation at constant density can be achieved by arranging the ends of molecules 
to fit between one another. However, this process leads to the segregation of ‘bottom’ 
ends of the molecules from their ‘top’ ends in the region of splay. This single particle 
entropy effect exists for rigid rods or flexible molecules and results in a contribution 
to the splay elastic constant which scales linearly with the chain length. 

To summarize, in a very long chain limit, in which all real molecules must be 
thought of as flexibile, the twist and the bend elastic constants will remain finite and 
only the splay elastic constant will diverge with the length of the molecule. 

In continuum elasticity the fundamental deformations of a system consist of 
displacements of small volume elements from their undistorted positions. The elastic 
free energy density of a single crystal of an infinite chain polymer nematic will depend 
on the gradients of displacements of the molecular chains. We are interested in those 
deformations that result in the rotations of the director. Gradients in the displace- 
ments parallel to the director correspond to stretching or compressing the chains, a 
rather different elastic process, much like a bulk compressibility. It can be taken into 
account by a first order elasticity term in the expression for the free energy density 
given below. Therefore, a complete description of the curvature elasticity of an infinite 
chain nematic can be made using only the displacements transverse to the director. 
The two components of these displacements are u(r), in the x direction and v(r) in the 
y direction, as shown in figure 1. For small displacements it directly follows from (2) 
that the components of the director are given by 

au av 
aZ. 

n, = - az’ ny = - (3) 

In an ordinary nematic director rotations are not coupled to any macroscopic dis- 
placements of volume elements and, therefore, these displacements cannot be used to 
describe the elastic processes. In an infinite chain nematic, however, all long wave- 
length rotations of the director are described by the gradients of displacements. In 
terms of these displacements the elastic free energy density has the form (a subscript 
indicates a partial derivative) 

f = t E ( u ,  + VY)* + $K,(u,, + VJ2 + +K&, - v,:) 2 + )K,(u:; + v?:) 

- (K2 + K24)(uxzvy; - U Y Z ~ , , ) .  (4) 
The first term describes the elastic compressibility effects, due to the changes in the 
lateral packing density of the molecular chains. For less than perfect order of a 
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Figure I .  Average director is parallel to the z axis. The gradients of the displacements u and 
z, describe the director n at any point. 

nematic, the stretching of the chains leads to a decrease in the cross-sectional area of 
the corresponding volume element. This process involves almost no bulk com- 
pression. The compressibility E - ’  for a solution, therefore, can be much larger than 
a typical compressibility for a neat liquid. For a polymer solution [4], we estimate it 
to be equal to 107erg/cm3. 

K , ,  K, ,  and K3 are the usual Frank elastic terms. The last term, involving K24, must 
be considered in certain surface interaction problems. We will discuss a case later in 
which this term plays an important role. 

Equation (4) implies that for long wavelength distortions in the z direction the 
splay energy can be neglected compared to the compressibility term. The splay term 
becomes comparable to the E term for wavelengths shorter than 

As = ~ R ( K , / E ) ’ ” ,  ( 5 )  

which is of the order of 100 A, based on the recent measurements of elastic constants 
in PBLG [5]. 

To construct the equilibrium equations for the solution of boundary value prob- 
lems, we minimized the elastic free energy f with respect to both transverse com- 
ponents of the displacement. The calculus of variations yields, for u and v 

- E(u, ,  + V,,X) + Kdux,, + V X Y A  + K2(u,,: - %y:A + K3U;Z;r 

- m,, + V,”) + KI(UrJZ2 + V y y J  - Kdu,:, - Vxx,,) + K3V2:,, 

- 

= 0. 

2. Interaction with a grooved surface 
To illustrate some of the implications of the infinite chain limit, we consider static 

distortions of a polymer nematic liquid crystal produced by an inhomogeneous 
surface. For the sake of simplicity, we treat the interaction of a semi-infinite slab of 
a nematic with a grooved surface, as shown in figure 2. Such a surface can be 
produced, for example, by rubbing a substrate, by oblique evaporation of thin films 
[6], or by microlithography techniques [7]. The aligning effects of a grooved surface 
in low molecular weight nematics [6] as well as in nematic solutions of PBG [8] have 
been discussed in the literature. Here we consider a somewhat idealized case of a 
‘slippery’ boundary condition at the surface; the nematic director can rotate freely 
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376 V. G. Taratuta and R. B. Meyer 

Figure 2. Response of a nematic to a grooved surface, the mean director is at an angle 0, to 
the grooves. The undulations of the director are shown relative to the hills (H) and valleys 
(0 

around the surface normal. An analogous problem for ordinary nematics has been 
treated previously [9]. Possible differences of the aligning effect of grooves in ordinary 
nematics and in long-chain polymer nematics have been pointed out in an earlier work 
of Meyer [2, Chap. 61 which treated a special case of a director perpendicular to the 
grooves. Here we extend the previous analysis to include a general case of a mean 
director orientation oblique to the grooves, which illustrates an essential part of the 
actual response to the undulating surface in the infinite chain limit. 

The amplitude of the grooves uo must be small compared to their wavelength 
A = 2n/q, u,q < 1. The problem possesses an obvious symmetry; nothing changes 
along the direction of the grooves. The 'slippery' boundary condition requires that the 
vertical component of the surface torque vanish 

The remaining boundary conditions are introduced by assuming that the director is 
parallel to the surface and becomes constant far from the surface 

u(x  = 0 , z )  = u,sin(q.r), u(x  = co,z) = v(x=co,z) = 0, (8) 

where q - r = q1 z + q2 y with q1 = q sin Oo and q2 = - q cos O,, and 8, is the angle 
between the mean director and the direction of the grooves. 

If the director is exactly normal to the grooves, then 8/8y = 0, ZJ = 0, and the 
twist distortion disappears. The elastic free energy density is then reduced to 

f = Eut + KIu:, + K3&, (9) 

- Eu.r.r + KIUXX,, + K3u,,,, = 0. (10) 

and the equilibrium equations for u and v to 

The solution of equation (10) with the boundary conditions (8) becomes 

u ( x ,  z) = uosin(qz)exp [ --x [ E .  z l q 2 ] 1 ' 2 ]  
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Elasticity of a nematic polymer 377 

and the elastic energy per unit area of surface due to the undulations is 

F = au;q2[K3(E + Klg2)]1’2. (12) 

For example, if the groove spacing is ten microns, K,q2  - 10erg/cm3 and can be 
ignored compared to E. The undulations of the director at  the surface then relax in 
the bulk with a characteristic length 

xn = ( q 2 A h ) - ’ y  Ah = (K,/E)”’.  (13) 

We observe here a smectic-like response of the liquid crystal to an undulating surface. 
The characteristic relaxation length xn is quadratic in the width of the grooves. Note 
that xn is much larger than the groove spacing 2n/q. For ten-micron grooves, 
2n/q = IOpm, and & = ~ o A ,  then xn - 1.5mm. 

In a low molecular weight nematic (E = 0), however, this problem has a solution 
for the director 

and the free energy becomes 

In this case the relaxation length is linear in the width of the grooves, 
xn = [q(K,/Kl)1’2] - I .  If K, 2: K,, then x” = I/q, i.e. of the order of the groove spacing. 
Thus, for the director normal to the grooves, a static distortion produced by surface 
undulations relaxes much more slowly in a nematic of long chains than in a low 
molecular weight nematic. The ratio of the surface energies for the two cases con- 
sidered is 

This result can be understood by observing that in order to relax the bend imposed 
by the undulating surface, one must introduce a splay deformation with a wavevector 
along the surface normal. In the infinite chain limit the splay costs a lot of energy and 
the bend distortion has to relax slowly, propagating a long distance into the bulk, 
resulting in a higher elastic energy. 

The case of a director perpendicular to the grooves points out a possibility of 
unusual elastic behaviour of a polymer nematic liquid crystal, rather different from 
that found in an ordinary nematic. However, it corresponds to an artificial physical 
situation, difficult to achieve experimentally. To complete the above picture of the 
aligning effect of grooves, one must consider a general case of a mean director oblique 
to the grooves. In that case the boundary condition (12) requires that v # 0, i.e. 
undulations of the director in the plane of the surface appear. Each component of the 
displacement then (u-vertical and v-horizontal) gives rise to a splay-bend and twist- 
bend elastic distortions. These distortions relax in the bulk each with its own charac- 
teristic length, A l  = 27r/k1 for the splay-bend, and A2 = 2n/k2 for the twist-bend. The 
solution of the equilibrium equations (3) consistent with the boundary conditions (12) 
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378 V. G. Taratuta and R. B. Meyer 

and (13) then becomes in the infinite chain limit 

The energy of deformation per unit area of the undulating surface is computed by 
substituting the solution for u and w into the general free energy (1). 

with s = sin Bo, c = cos 0,. For an ordinary nematic we simply put E = 0. 
We see from equations (17) and (18) that for any finite 8, the characteristic 

relaxation lengths for splay-bend (xp) and twist-bend (xt)  distortions now have the 
form (8, = 44) 

Here the elastic relaxation again exhibits a nematic-like rather than the smectic-like 
behaviour. Both relaxation lengths are linear in the groove spacing. What is remark- 
able, however, is that both splay-bend and twist-bend deformations relax into the 
bulk with characteristic lengths of comparable magnitude, which is of the order of the 
groove spacing. Taking again ten micron grooves as an example, we find xp - 1 pm, 
instead of 1.5 mm for the director perpendicular to the grooves. Assuming K,/K2 = 8, 
for example, we find for the ratio xp/x; = 3. At the first sight, this is a surprising 
result. One would have expected a larger number for this ratio since splay is strongly 
inhibited in the infinite chain limit, while twist remains easy. However, one realizes 
that there is now an in-plane component of splay, opposite to the out-of-plane 
component, needed to relax the bend imposed by the undulating surface. The two 
components of splay tend to cancel each other, which results in a lower splay energy. 
This effect exists in low molecular weight nematics, but is not important energetically. 
In polymer nematics, however, it is crucial. The infinite chain nematic behaves again 
like an ordinary nematic rather than like a smectic. 

If the director is parallel to the grooves, then F = 0. For small deviations of the 
mean director from the direction of the grooves, one can define an elastic anchoring 
coefficient A by expanding a free energy to second order in 8, 

F = Ae; + o(e;). (21) 
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Elasticity of a nematic polymer 379 

Using equation (19) we obtain 

in the infinite chain limit and 

for a low molecular weight nematic. We see here again that the elastic anchoring at  
an undulating surface is not significantly different in an ordinary nematic, where 
K ,  z K, ,  and in an infinite chain nematic, where splay deformation is impossible. 

This example illustrates that the splay-avoidance effects are an essential part of 
the response of the infinite chain nematic to an undulating surface. They are also very 
important to understanding the nature of other types of static elastic deformations in 
a polymer nematic liquid crystal. 

This research was supported in part by the National Science Foundation through 
Grant No. DMR-8210477, and by the Martin Fisher School of Physics, Brandeis 
University. 
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